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Introduction

Many empirical questions in economics, finance and
accounting are interested in the causal effects of programs or
policies.
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Goal of this talk

Review treatment effect models.

Rubin causal model.
Identification and estimation results under unconfoundedness.

Introduce some estimators that can be used in the research.

Access the plausibility of the unconfoundedness assumption.

Estimating Conditional Average Treatment Effects: Abrevaya,
Hsu and Lieli (2015, JBES).
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Rubin Causal Model

Treatment assignment:

D =

{
1, if the individual receives treatment,
0, otherwise.

Potential outcomes:

Y (0), the outcome that would be observed if the individual did
not receive the treatment.
Y (1), the outcome that would be observed if the individual
received the treatment.

Observe:

Treatment indicator: D.
Outcome of interest: Y = DY (1) + (1−D)Y (0).
A vector of covariates: X.
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What is Treatment Effect?

Treatment Effect for the Whole Population:

Causal effects of programs or policies.

Interested in the relation between g(Y (1)) and g(Y (0)),
where g(·) is a functional of random variables.

Average treatment effects: E[Y (1)]− E[Y (0)], where
g(Y ) = E[Y ].

Quantile treatment effects: F−1
Y (1)(τ)− F−1

Y (0)(τ), where

g(Y ) = F−1
Y (τ) denotes the τ -th quantile of Y .

We can consider other inequality measures such as Gini
indexes.
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What is Treatment Effect? (Cont’d)

Treatment Effect for the Treated Population:

Causal effects of programs or policies for the treated
individuals.

Average treatment effects of the treated:
E[Y (1)

∣∣D = 1]− E[Y (0)|D = 1], where
g(Y ) = E[Y

∣∣D = 1].

Quantile treatment effects of the treated:
F−1

Y (1)
∣∣D=1

(τ)− F−1

Y (0)
∣∣D=1

(τ).

Treatment effects for the non-treated can be defined similarly.
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Main Difficulty in Treatment Effect Model

Only observe Y = DY (1) + (1−D)Y (0).

Never observe both potential outcomes, Y (1) and Y (0).

We have a missing variable problem.

Extra conditions are needed for identification.
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Two Types of Identifying Conditions:

1. Unconfoundedness assumption: D ⊥ (Y (1), Y (0))
∣∣X.

Selection-on-observable, ignorability, conditional
independence, exogeneity.

Without covariates, unconfoundedness assumption reduces to
D ⊥ (Y (1), Y (0)) which is the random experiment
assumption.

2. Endogenous assignment with a valid binary instrument.
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Propensity score: p(x) = P (D = 1|X = x).

Overlap Assumption: 0 < p ≤ p(x) ≤ p̄ < 1.

Overlap Assumption: The supports of X|D = 1 and X|D = 0
are the same.

Why these two are equivalent?
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Average Treatment Effects

Average treatment effects (ATE): β = E[Y (1)− Y (0)].

Under unconfoundedness assumption and overlap assumption,

β = EX

[
E[Y |D = 1, X]− E[Y |D = 0, X]

]
. Proof (1)

or

β = E
[ DY
p(X)

− (1−D)Y

1− p(X)

]
. Proof (2)
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Parametric Estimators

Parametric Imputation Estimator based on (1):

β̂imp =
1

n

n∑
i=1

ρ1(Xi, θ̂1)− ρ0(Xi, θ̂0),

where ρ1(Xi, θ1) and ρ0(Xi, θ0) are parametric models for
ρ1(x) = E[Y (1)|X = x] and ρ0(x) = E[Y (0)|X = x].

For a parametric model ρd(x) = ρd(x, θ1), θd can be
estimated by

θ̂d = arg min
θ∈Θ

Dd
i (1−Di)

1−d(Yi − ρd(x, θ))2.
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Parametric Estimators (Cont’d)

Traditionally, we estimate the following model:

Y = α+ βD + γX + ε, (3)

and use an OLS estimator to estimate β.

This is equivalent to impose the following parametric models
on ρ1(X) and ρ0(X):

ρ1(X, θ1) = α1 + γ1X, ρ0(X, θ0) = α0 + γ0X,

with θ1 = (α1, γ1) = (α+ β, γ) and θ0 = (α0, γ0) = (α, γ).

OLS is equivalent to the following:

θ̂d = (α̂d, γ̂d) = arg min
a,r

Dd
i (1−Di)

1−d(Yi − a− rXi)
2.

while imposing a constraint: γ1 = γ0.

In this model, ATE = CATE(x) for all x, i.e., treatment
effect is homogenous.
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Parametric Estimators (Cont’d)

Or, we estimate the following model:

Y = α+ βD + γX + ηDX + ε, (4)

This is equivalent to impose the following parametric models
on ρ1(X) and ρ0(X):

ρ1(X, θ1) = α1 + γ1X, ρ0(X, θ0) = α0 + γ0X,

with θ1 = (α1, γ1) = (α+ β, γ + η) and
θ0 = (α0, γ0) = (α, γ).
OLS is equivalent to the following:

θ̂d = (α̂d, γ̂d) = arg min
a,r

Dd
i (1−Di)

1−d(Yi − a− rXi)
2.

CATE(x) = β + ηx for all x. Therefore, the coefficient of η
is interpret as the marginal effect of X on CATE.
Treatment heterogeneity over covariate values is allowed.
ATE = β + ηE[X].
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Parametric Estimators (Cont’d)

Parametric Inverse Probability Weighted Estimator based on
(2):

β̂ipw =
1

n

n∑
i=1

DiYi
p(Xi, γ̂)

− (1−Di)Yi
1− p̂(Xi, γ̂)

,

where p(Xi, γ) is a parametric model for
p(x) = E[D = 1|X = x].

For a parametric model, say Probit or Logit, p(x) = p(x, γ), γ
can be estimated by

γ̂ = arg min
r∈Γ

Di log(p(Xi, r)) + (1−Di) log(1− p(Xi, r)).

15 / 34



Remarks on Parametric Estimators

Implementation is easy.

Asymptotics is easier to derive.

Asymptotic normality follows standard arguments.

To make inference, bootstrap method works.

However, these estimators are subject to model
misspecification resulting in inconsistent estimator.
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Nonparametric IPW Estimator

Proposed by Hirano, Imbens and Ridder (2003, HIR):

β̂ =
1

n

n∑
i=1

DiYi
p̂(Xi)

− (1−Di)Yi
1− p̂(Xi)

,

where p̂(x) is a non-parametric estimator for p(x).

Nonparametric Imputation Estimators are available too. The
results are similar to nonparametric IPW estimator, but I have
been working on nonparametric IPW estimator, so I am more
familiar with this method. Hence, the nonparametric
imputation estimators will be briefly discussed later.
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Nonparametric IPW Estimator (Cont’d)

Under regularity conditions,
√
n(β̂ − β) ∼ N(0,Vβ), where

Vβ = E[φ(Y,D,X)2] with

φ(Y,D,X) =
DY

p(X)
− (1−D)Y

1− p(X)
− β

−
(ρ1(X)

p(X)
+

ρ0(X)

1− p(X)

)(
D − p(X)

)
.

Vβ is the semiparametric efficiency bound for β as shown by
Hahn (1988).
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How to nonparametrically estimate p(x)

We suggest the Series logit estimator (SLE) proposed by HIR.
Let φ = (φ1, ..., φdx)′ ∈ Zdx+ be a dx-dimensional vector of
non-negative integers, where Z+ denotes the set of
non-negative integers.
Let {φ(k)}∞k=1 be a sequence including all distinct φ ∈ Zdx+

such that |φ(k)| is non-decreasing in k and let xφ =
∏dx
j=1 x

φj
j .

For any integer K, define RK(x) = (xφ(1), ..., xφ(K))′ as a
vector of power functions.
Let Λ(a) = exp(a)/(1 + exp(a)) be the logistic cumulative
distribution function (CDF).
The SLE for p(Xi) is defined as p̂(x) = Λ

(
RK(x)′π̂K

)
, where

π̂K = arg max
πk

1

n

n∑
i=1

Di · log
(
Λ
(
RK(Xi)

′πK
))

+ (1−Di) · log
(
1− Λ

(
RK(Xi)

′πK
))
.
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How to make inference?

To make inference or construct confidence interval, we need a
consistent estimator for Vβ .

Let ρ̂1(x) and ρ̂0(x) be

ρ̂1(x) = RK(x) ·
( 1
n

n∑
i=1

RK(Xi)
′RK(Xi)

)−1

· 1
n

n∑
i=1

RK(Xi)
′ DiYi
p̂(Xi)

,

ρ̂0(x) = RK(x) ·
( 1
n

n∑
i=1

RK(Xi)
′RK(Xi)

)−1

· 1
n

n∑
i=1

RK(Xi)
′ (1−Di)Yi
1− p̂(Xi)

,

where RK(Xi)’s are the same as SLE.

Then a consistent estimator for Vβ is given by

V̂β =
1

n

n∑
i=1

( DiYi
p̂(Xi)

− (1−Di)Yi
1− p̂(Xi)

− β̂

−
( ρ̂1(Xi)
p̂(Xi)

+
ρ̂0(Xi)

1− p̂(Xi)

)(
Di − p̂(Xi)

))2
.

Alternatively, one can use bootstrap.
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Discussions on Nonparametric Estimators

They are semiparametric efficient.

They are not subject to model misspecification.

However, they depend on various nonparametric estimators for
conditional mean functions.

For nonparametric estimations, there are tuning parameters,
e.g. number of power series terms or bandwidth, to pick and
the results can be sensitive to the choices of the tuning
parameters.
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Access the Unconfoundedness Assumption

Unconfoundedness assumption is not testable (without further
assumptions).

However, there are indirect methods that we can use to access
the plausibility of it.

One idea is to estimate the treatment on a pseudo-outcome, a
variable known to be unaffected by the treatment, i.e., the
treatment effect should be zero.

If the estimated treatment effect of this variable is close to
zero, the unconfoundedness assumption is considered more
plausible.

“Testing the Unconfoundedness Assumption via Inverse
Probability Weighted Estimators of (L)ATT,” by Donald, Hsu
and Lieli (2014, JBES) propose the first direct test for the
unconfoundedness assumption under IV assumption.
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Conditional Average Treatment Effects (CATE)

“Estimating Conditional Average Treatment Effects,” by
Abrevaya, Hsu and Lieli (2015, JBES) introduce Conditional
Average Treatment Effect (CATE) designed to capture the
heterogeneity of a treatment effect across subpopulations.

CATE(x1) = E[Y (1)− Y (0)|X1 = x1], where X1 is a subset
set of covariates X.

expected effect of smoking on birthweight as a function of X1.
expected effect of smoking on birthweight for a mother
randomly chosen from the subpopulation X1 = x1.

Under unconfoundedness assumption,

CATE(x1) = E
[ DY
p(X)

− (1−D)Y

1− p(X)

∣∣∣X1 = x1

]
.
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Proposed CATE Estimator (semiparametric)

Parametric propensity score estimator: The estimator θ̂n
of the propensity score model p(x, θ), θ ∈ Θ ⊂ Rd, d <∞,
satisfies supx∈X |p(x, θ̂n)− p(x, θ)| = Op(n

−1/2) for any
θ ∈ Θ.

Estimator for CATE(x1) is

ĈATEθ(x1) =

1
nh`1

∑n
i=1

(
DiYi
p(x,θ̂n)

− (1−Di)Yi
1−p(x,θ̂n)

)
K1

(
X1i−x1
h1

)
1
nh`1

∑n
i=1K1

(
X1i−x1
h1

) ,

where K1(u) is a kernel function and h1 is a bandwidth.
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Proposed CATE Estimator (semiparametric) (Cont’d)

Then√
nh`1(ĈATEθ(x1)− CATE(x1))

=
1√
nh`1

1

fx1(x1)

n∑
i=1

ψθ(Xi, Yi, Di)K1

(X1i − x1

h1

)
+ op(1)

d→N

(
0,
‖K1‖22σ2

ψθ
(x1)

fx1(x1)

)
,

where ψθ(x, y, d) = d(y−m1(x))
p(x) − (1−d)(y−m0(x))

1−p(x) −CATE(x1).

σ2
ψθ

(x1) = E[ψ2
θ(X,Y,D)|X1 = x1].
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In the paper, we also propose fully nonparametric estimator
for CATE.

All of the results for CATE extend to the following cases
easily:

Conditional average treatment effects of the Treated (CATT).
Conditional local average treatment effects (CLATE).
Conditional average treatment effects of the Treated (CLATT).

Lee, Okui and Whang (JAE, 2017). “Doubly Robust Uniform
Confidence Band for the Conditional Average Treatment
Effect Function”.

Fan, Hsu, Lieli and Zhang (JBES, forthcoming). “Estimation
of Conditional Average Treatment Effects with
High-Dimensional Data”.
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Application

Effect of a mother’s smoking during pregnancy on baby’s
birthweight.

Many estimates of the average effect, but

we don’t know very much about how heterogeneous the effect
is across relevant subpopulations:

(how) does it depend on mother’s age, education, family
income, etc.

Data: North Carolina Vital Statistics; all live births between
1988-2002

many of the mother’s personal characteristics recorded.
information on mother’s zip code⇒additional covariates.
per capita income in the mother’s zip code serves as a proxy
for family income.

Focus on first time black mothers to save computation time.

157,989 observations.
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Is This a Relevant Problem?

Very much so. Low birth weight

associated with high healthcare costs (direct and later);

evidence that it adversely affects health, educational, and
labor market outcomes later in life;

potentially contributes to intergenerational persistence of
socioeconomic inequality;

⇒ important to understand role of risk factors such as smoking.

Large applied economics literature: Abrevaya and Dahl (2008,
JBES), Almond et al. (2005, QJE), Abrevaya (2006, JAE), Walker
et al. (2009, SEJ), etc.
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Identification

Comparing average birthweight across smoking vs.
non-smoking mothers likely does not identify causal effect
(due to confounding factors).

Assumption: all relevant confounding factors can be observed.

Baseline specification:

X = [baby’s gender, mother’s age, marital status, educ,...

prenatal care, zip location, per capita income]

Some form of unconfoundedness often used:
Almond et al. (2005), da Veiga and Wilder (2008), Walker et
al. (2009).
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CATE as a function of age: semiparametric results
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Extensions

Donald and Hsu (2014, JoE). “Estimation and Inference for
Distribution Functions and Quantile Functions in Treatment
Effect Models.”

Hsu (2017, Econometrics Journal). “Consistent Tests for
Conditional Treatment Effects.”

Hsu, Lai and Lieli (JBES, forthcoming). “Estimation and
Inference for Counterfactual Treatment Effects.”

Hsu, Lee, Lai and Liao (2020, work in progress). “Testing
Treatment Effect Monotonicity under Unconfoundedness
Assumption.”

Treatment effect with High-Dimensional Data.

Mediation analysis.

Regression Discontinuity.
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Thanks!
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Proof of identification of ATE

Ex

[
E
[
Y |D = 1, X

]]
= Ex

[
E
[
Y (1)

∣∣∣D = 1, X
]]

=Ex

[
E
[
Y (1)

∣∣∣X]] = E[Y (1)].

Back
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Proof of identification of ATE

E
[ DY
p(X)

]
= Ex

[
E
[ DY
p(X)

∣∣∣X]]
=Ex

[
p(X)E

[ DY
p(X)

∣∣∣X,D = 1
]

+ (1− p(X))E
[ DY
p(X)

∣∣∣X,D = 0
]]

=Ex

[
E[Y (1)

∣∣∣X,D = 1]
]

= Ex

[
E[Y (1)

∣∣∣X]
]

= E[Y (1)].

Back
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